ANNEXE 6:

Caractéristiques du moteur

. . .

ENVIRONNEMENT TECHNIQUE ET SCIENTIFIQUE

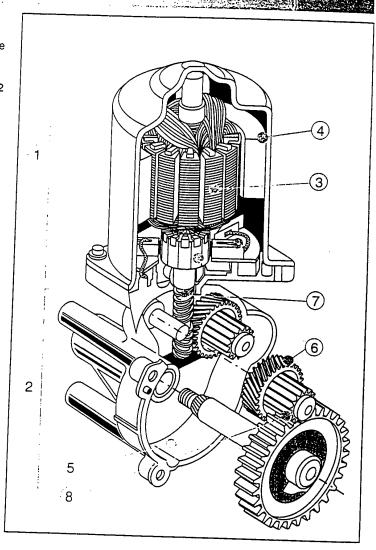
TECHNICAL FEATURES (pages 8 to 10)

1 PRINCIPE DE CONCTIONNEMENT

Les motoréducteurs à courant continu employés en essuyage comportent deux sous-ensembles :

- la partie électromagnétique, qui constitue l'origine de la puissance (électrique) : le moteur 1
- la partie mécanique, qui permet l'adaptation de la première au besoin (couple, vitesse) : le réducteur 2

LE MOTEUR ELECTROMAGNETIQUE :


La circulation d'un courant dans les spires (bobines du rotor ou induit (3)) génère un flux magnétique (électroaimant), qui transforme l'énergie électrique en énergie nécanique par effets vis-à-vis du champ magnétique permanent (carcasse + ferrites ou inducteur 4).

Le sens de rotation du moteur est fixé par la polarité du branchement de l'alimentation électrique. L'inversion du branchement provoque donc une inversion du sens de rotation.

LE REDUCTEUR MECANIQUE :

Il permet d'adapter la vitesse et le couple au besoin du système qu'il entraîne.

Le réducteur, situé à l'intérieur du socle 5, est composé d'un premier train par roue ou pignons 6 et vis sans fin 7, et dans certains cas, d'un multiplicateur d'angle (moteurs 4GA et 4BGA), ou second étage (8) (moteurs MFD).

2 GARAGRERISTIQUESIDU MOTOREDUCTEUR

NOTATIONS, PARAMETRES UTILISÉS, UNITÉS :

Un	Tension nominale (12 ou 24)	Volt 00	
I _o I _{MAX}	Courant à vide (sans charge sur réducteur) Courant à vide maximal (couple bloqué)	Volt (V) Ampère (A)	
С₅ С _{мах}	Couple utile à N = 5 Tr/min Couple utile maximal (bloqué)		
No	Vitesse à vide (sans charge sur réducteur)	Newton-Mètre (Nm) Tours Minute (Tr/min)	
O _{UN} O _{UMAX}	Puissance utile (mécanique restituée) nominale Puissance utile maximale	= 2π/60 Radian/Seconde (Rad/s) Watt (W)	
D _{aN} D _{aMAX}	Puissance absorbée (électrique) nominale Puissance absorbée maximale	Watt (W)	
ባ _R በ ———	Rendement réducteur Rendement global (motoréducteur)		

ENVIRONNEMENT TECHNIQUE ET SCIENTIFIQUE

TECHNICAL FEATURES (pages 8 to 10)

LOIS DE FONCTIONNEMENT:

Le couple restitué par le moteur dépend directement du courant absorbé. On note :

C = Kc(I-Io)

avec K_c Constante de couple

→ le couple est proportionnel au courant

• La conversion électromécanique est donnée à l'aide du couple électromagnétique :

 $EI = (C+K_cI_0)N$

avec E Force contre-électromotrice

ightarrow la vitesse est inversement proportionnelle au couple

Le réducteur associé au moteur permet de réduire sa vitesse :
 R = N_S/N_M avec vitesse N_S de sortie réd

avec vitesse N_S de sortie réducteur et N_M moteur

ou $R = Z_S/Z_M$

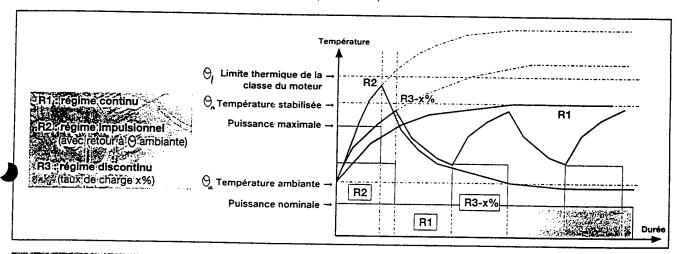
avec nombre de dents Z_S de la roue de sortie et Z_M vis moteur

tout en augmentant son couple (aux pertes près) :

 $R = \eta_R C_M/C_S$

• La puissance absorbée par le moteur est donnée par ses grandeurs électriques :

 $P_a = UI$

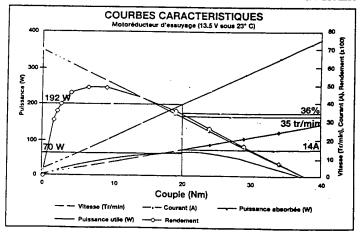

→ la puissance absorbée est proportionnelle au couple

La puissance restituée dépend des grandeurs mécaniques en sortie :

 $P_u = CN = \eta P_a$

 \rightarrow les pertes (mécaniques, magnétiques, électriques) du moteur, identifiées par le rendement global, sont la différence entre P_u et P_a

 Les pertes se concrétisent par un échauffement qui, pour les moteurs d'essuyage, tend à se stabiliser durant le régime de fonctionnement (dit stabilisé) :



3 COURBES CARACTERISTIQUES ET INTERPRETATIONS

En considérant le point de fonctionnement désiré pour une utilisation du motoréducteur, les courbes caractéristiques permettent de dimensionner son alimentation, ou d'adapter le mécanisme qu'il doit recevoir :

Soit un couple utile de 20 Nm demandé au moteur :

- la vitesse nominale sous 13,5 V sera de 35 Tr/min (la puissance mécanique de 70 W)
- le courant nominal absorbé sera de 14 A (la puissance électrique de 192 W)
- le rendement du moteur sera de 36% (échauffement non maximal)

ENVIRONNEMENT TECHNIQUE ET SCIENTIFIQUE TECHNICAL FEATURES (pages 8 to 10)

4 UTILISATIONS PARTICULIERES

Limite de démagnétisation d'un moteur :

Les aimants permanents du moteur sont soumis lors du fonctionnement à des champs magnétiques alternatifs créés par l'induit. Un risque de démagnétisation (pertes des performances / couple) apparaît lors d'utilisations à des températures inférieures à -30°C. Cependant, le moteur peut être stocké sans alimentation à des températures inférieures (-40°C).

Protection thermique:

Pour éviter un échauffement excessif du moteur lors d'une utilisation avec un couple résistant très élevé (ex. fonctionnement permanent d'un essuie-vitre sur vitre sèche), il est proposé en option une protection intégrée sur l'alimentation, qui provoque momentanément une ouverture du circuit électrique lorsqu'une ou l'autre des conditions suivantes est atteinte :

- courant consommé trop important
- température interne trop élevée (risque de dégradation)

Cette protection est proposée systématiquement pour les motoréducteurs à sortie alternative.

Protection d'étanchéité :

En cas d'utilisation extrême, plusieurs solutions d'étanchéité aux projections d'eau peuvent être proposées : capot plastique enclipsable sur le motoréducteur, ou même "chaussette caoutchouc" recouvrant totalement les parties assemblées (connectique et réducteur).

Antiparasitage:

Pour répondre aux normes en vigueur, la fonction d'antiparasitage peut être proposée. Elle permet d'éviter, entre-autres, les perturbations sur les fréquences radiophoniques et téléphoniques.

Sens de rotation :

Par construction, les moteurs présentent un sens préférentiel de fonctionnement représenté ci-dessous :

En prenant le moteur dans son sens longitudinal, inducteur face à soi, arbre de sortie vers le haut, si l'axe de celui-ci est dégagé vers la droite de l'axe de l'inducteur, le sens de rotation du moteur est horaire (sens des aiguilles d'une montre); vers la gauche, il est anti-

> Sens anti-horaire (SIH)

SOCLE GAUCHE

Sens horaire (SH)

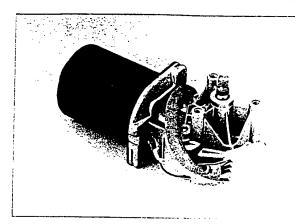
SOCLE DROIT

Toutefois, pour certaines applications, il est proposé des sens de rotation indifférents, SH et SIH.

Position d'arrêt constant (Arrêt fixe) :

Les motoréducteurs sont étudiés pour s'arrêter systématiquement après un cycle de fonctionnement dans la même position angulaire. Ils possèdent pour cela un branchement spécifique et un mécanisme électromécanique. Ce système peut être déconnecté.

Motoréducteurs à sortie alternative (Application d'essuyage arrière) :


L'angle de balayage est une constante de construction, réalisée par un mécanisme d'embiellage intégré.

5 LANORMALISATION

Les motoréducteurs de la gamme Valeo sont fabriqués en respectant strictement le Cahier des Charges des Constructeurs Automobiles. La conception et la production sont donc soumises à des contraintes de sécurité et de respect de l'environnement auxquelles Valeo répond en élaborant des solutions efficaces et opérationnelles.

- inflammabilité des matières plastiques :
 - → utilisation de matériaux non dangereux dont 95% sont recyclables. Norme FMVSS 302
- étanchéité (poussière, liquide...) :
 - → recours à des techniques diverses de protection telles que : joints spéciaux, chaussette de protection ou résine sur connexion... Norme NFC 20010
- ambiance hostile (brouillard salin, chaleur humide, températures extrêmes...):
- → application de divers traitements de surface des parties exposées. Norme NFX41002
- vibrations et chocs :
 - → tests de résistance des produits en fatigue et destruction.
- contrôle et maîtrise de la bruyance :
 - → essais de bruyance en chambre sourde.
- maîtrise d'émission de parasites :
 - → mise en place de filtres antiparasitages pour maîtriser l'é: ssion de parasites.

MOTOREDUCTEUR DOUBLE ETAGE, A SORTIE ROTATIVE DOUBLE BALANCED GEARBOX ROTATIVE D.C. MOTORS

MFD 250

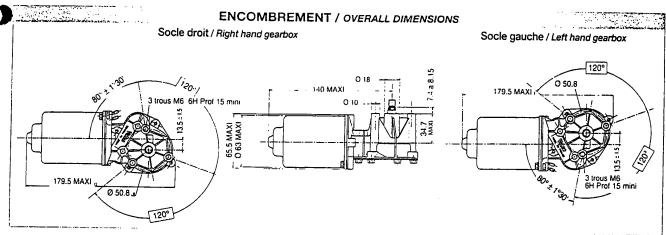
CARACTERISTIQUES GENERALES / GENERAL DATA

- Tension d'utilisation / Nominal voltage
- Condition Thermique d'utilisation / Working temperature →30°C à +80°C .
- Masse / Weight

1.195 Kg

Vitesse / Wiping speed

Bivitesse / Two speed

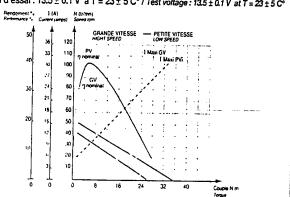

• Sens de rotation / Output

SH ou SIH* / CW or ACW*

• Diamètre de l'arbre de sortie / Exit spindle diameter

10 mm

* SH = Sens Horaire, SIH = Sens Anti Horaire / CW = Clockwise, ACW = Anticlockwise



PERFORMANCES / PERFORMANCES

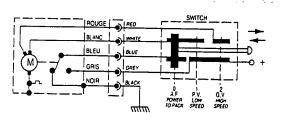
	PV/LS)	GV/HS
Vitesse à vide / Speed (no load)	50 tr/mn rpm	78 tr/mn <i>rpm</i>
Courant à vide / Current (no load)	2 A	2,5 A
• Couple à 5 tr/mn / Torque at 5 rpm	28 Nm	25 Nm
Courant maxi. cons. / Max. current	25 A	30 A
• Puissance abs. maxi. / Max. cons. powe	er 340 W	400 W
Niveau de bruit / Noise level (Mesuré à 10 cm en chambre sourde / Measure)	55 dBA d at 10 cm in an ar	60 dBA

COURBES DE VITESSE ET D'INTENSITE OUTPUT SPINDLE CHARACTERISTICS (SPEED AND CURRENT)

Tension d'essai : 13.5 \pm 0.1 V à T = 23 \pm 5 C° / Test voltage : 13.5 \pm 0.1 V at T = 23 \pm 5 C°

OPTIONS / OPTIONS

Protection thermique / Thermal protection Protection d'étanchéité / Water ingress protection


Antiparasitage / RFI suppression

and the state of the state of the state of

Monovitesse / Single speed

Tension 24 V / Voltage 24 V

SCHEMA DE BRANCHEMENT / WIRING DIAGRAM

